1,719 research outputs found

    Combined heat and power system for stoves with thermoelectric generators

    Get PDF
    Solid-fuel stoves are used in developing countries, remote locations, and in general more commonly due to convenient fuel cost for space heating. The possibility of also using the stove heat to heat water and produce electricity represents an added benefit. This work presents an application of thermoelectric generators to a solid-fuel stove to concurrently charge a lead-acid battery and transfer heat to water for heating or household use. The feasibility of the proposed CHP system is demonstrated for a common solid-fuel stove. This system produces an average of 600 Wth and 27 Wel (42 Wel peak) during a 2-h long experiment in which the TEG efficiency is around 5% and the MPPT efficiency of the power converters used is demonstrated

    Rankine Cycle efficiency gain using thermoelectric heat pumps

    Get PDF
    The Rankine cycle remains the dominant method of thermal plant electricity generation in the world today. The cycle was described over 150 years ago and significant performance advances continue to be realised. On-going metallurgy research has enabled the operating pressure and temperature of the boiler and turbine to be increased, thereby improving the cycle efficiency. The ubiquitous use of the Rankine cycle on a massive scale in conjunction with fossil fuels as the energy source continues to motivate further efficiency improvements in the cycle.<p></p> Previous work established a theoretical basis for the use of thermoelectric heat pumps (THPs) in the condensation process of the Rankine cycle to positively impact cycle efficiency. The work presented here experimentally validates this prior work and provides performance metrics for current commercially available THPs and quantifies how their use can increase the efficiency of the Rankine cycle as implemented in a large power plant.<p></p> A commercial THP is characterised to obtain its Coefficient of Performance (COP) variation with input current and the amount of thermal energy transported. A larger-scale system comprising of a multistage thermoelectric heat pump is then considered, demonstrating that using commonly available THPs a fuel load reduction of over 1.5% is achievable for a typical generating set whilst simultaneously increasing the overall plant cycle efficiency from 44.9% to 45.05%.<p></p> The paper concludes with a cost-benefit analysis of the system, showing that over a four year period the saving in fuel used can easily re-coup the capital cost incurred by the addition of the condenser heat pump

    Thermoelectric energy harvester with a cold start of 0.6 °C

    Get PDF
    This paper presents the electrical and thermal design of a thermoelectric energy harvester power system and its characterisation. The energy harvester is powered by a single Thermoelectric Generator (TEG) of 449 couples connected via a power conditioning circuit to an embedded processor. The aim of the work presented in this paper is to experimentally confirm the lowest ΔT measured across the TEG (ΔTTEG) at which the embedded processor operates to allow for wireless communication. The results show that when a temperature difference of 0.6 °CΔTTEG is applied across the thermoelectric module, an input voltage of 23 mV is generated which is sufficient to activate the energy harvester in approximately 3 minutes. An experimental setup able to accurately maintain and measure very low temperatures is described and the electrical power generated by the TEG at these temperatures is also described. It was found that the energy harvester power system can deliver up to 30 mA of current at 2.2 V in 3ms pulses for over a second. This is sufficient for wireless broadcast, communication and powering of other sensor devices. The successful operation of the wireless harvester at such low temperature gradients offers many new application areas for the system, including those powered by environmental sources and body heat

    Neutrophil-Related Oxidants Drive Heart and Brain Remodeling After Ischemia/Reperfusion Injury

    Get PDF
    The inflammatory response associated with myocardial and brain ischemia/reperfusion injury (IRI) is a critical determinant of tissue necrosis, functional organ recovery, and long-term clinical outcomes. In the post-ischemic period, reactive oxygen species (ROS) are involved in tissue repair through the clearance of dead cells and cellular debris. Neutrophils play a critical role in redox signaling due to their early recruitment and the large variety of released ROS. Noteworthy, ROS generated during IRI have a relevant role in both myocardial healing and activation of neuroprotective pathways. Anatomical and functional differences contribute to the responses in the myocardial and brain tissue despite a significant gene overlap. The exaggerated activation of this signaling system can result in adverse consequences, such as cell apoptosis and extracellular matrix degradation. In light of that, blocking the ROS cascade might have a therapeutic implication for cardiomyocyte and neuronal loss after acute ischemic events. The translation of these findings from preclinical models to clinical trials has so far failed because of differences between humans and animals, difficulty of agents to penetrate into specific cellular organs, and specifically unravel oxidant and antioxidant pathways. Here, we update knowledge on ROS cascade in IRI, focusing on the role of neutrophils. We discuss evidence of ROS blockade as a therapeutic approach for myocardial infarction and ischemic stroke

    Histopathology of the synovial tissue : perspectives for biomarker development in chronic inflammatory arthritides

    Get PDF
    The histopathological and molecular analysis of the synovial tissue has contributed to fundamental advances in our comprehension of arthritis pathogenesis and of the mechanisms of action of currently available treatments. On the other hand, its exploitation in clinical practice for diagnostic or prognostic purposes as well as for the prediction of treatment response to specific disease-modifying anti-rheumatic drugs is still limited. In this review, we present an overview of recent advances in the field of synovial tissue research with specific reference to the methods for synovial tissue collection, approaches to synovial tissue analysis and current perspectives for the exploitation of synovial tissue-derived biomarkers in chronic inflammatory arthritides

    B cell autoimmunity and bone damage in rheumatoid arthritis

    Get PDF
    Rheumatoid arthritis (RA) is a chronic immune-inflammatory disease associated with significant bone damage. Pathological bone remodeling in RA is primarily driven by persistent inflammation. Indeed, pro-inflammatory cytokines stimulate the differentiation of bone-resorbing osteoclasts and, in parallel, suppress osteoblast function, resulting in net loss of bone. Abating disease activity thus remains the major goal of any treatment strategy in patients with RA. Autoantibody-positive patients, however, often show a rapidly progressive destructive course of the disease, disproportionate to the level of inflammation. The epidemiological association between RA-specific autoantibodies, in particular anti-citrullinated protein autoantibodies, and poor structural outcomes has recently found mechanistic explanation in the multiple roles that B cells play in bone remodeling. In this review, we will summarize the substantial progress that has been made in deciphering how B cells and autoantibodies negatively impact on bone in the course of RA, through both inflammation-dependent and independent mechanisms

    Psychoactive drug consumption among truck-drivers: A systematic review of the literature with meta-analysis and meta-regression

    Get PDF
    Few studies have assessed the extent of psychoactive drug consumption in the occupational setting. The trucking sector, in particular, is an important cause for concern, since psychoactive substance use has a relevant impact on the drivers\u2019 health and safety, increasing the risk of injuries and traffic accidents, potentially affecting the general public health as well. A systematic review of the literature and meta-analysis was performed in order to provide Occupational Health Professionals and policymakers with an updated epidemiological perspective regarding this important issue. The results showed a prevalence of overall drug consumption of 27.6% [95%CI 17.8-40.1], particularly high considering illicit CNS-stimulants (amphetamine consumption of 21.3% [95%CI 15.7-28.1], and cocaine consumption of 2.2% [95%CI 1.2-4.1]). It appears that truck-drivers choose stimulant substances as a form of performance enhancing drug, in order to increase productivity. However, chronic and high dose consumption has been shown to decrease driving skills, placing these professional drivers at risk for health and road safety. Further research is required, particularly in Europe, in order to fill the knowledge gap and improve the strength of evidence

    Hydrogen peroxide is a neuronal alarmin that triggers specific RNAs, local translation of Annexin A2, and cytoskeletal remodeling in Schwann cells

    Get PDF
    Schwann cells are key players in neuro-regeneration: They sense "alarm" signals released by degenerating nerve terminals and differentiate toward a proregenerative phenotype, with phagocytosis of nerve debris and nerve guidance. At the murine neuromuscular junction, hydrogen peroxide (H2O2) is a key signal of Schwann cells' activation in response to a variety of nerve injuries. Here we report that Schwann cells exposed to low doses of H2O2 rewire the expression of several RNAs at both transcriptional and translational levels. Among the genes positively regulated at both levels, we identified an enriched cluster involved in cytoskeleton remodeling and cell migration, with the Annexin (Anxa) proteins being the most represented family. We show that both Annexin A2 (Anxa2) transcript and protein accumulate at the tips of long pseudopods that Schwann cells extend upon H2O2 exposure. Interestingly, Schwann cells reply to this signal and to nerve injury by locally translating Anxa2 in pseudopods, and undergo an extensive cytoskeleton remodeling. Our results show that, similarly to neurons, Schwann cells take advantage of local protein synthesis to change shape and move toward damaged axonal terminals to facilitate axonal regeneration

    Heat shock affects mitotic segregation of human chromosomes bound to stress-induced satellite III RNAs

    Get PDF
    Heat shock activates the transcription of arrays of Satellite III (SatIII) DNA repeats in the pericentromeric heterochromatic domains of specific human chromosomes, the longest of which is on chromosome 9. Long non-coding SatIII RNAs remain associated with transcription sites where they form nuclear stress bodies or nSBs. The biology of SatIII RNAs is still poorly understood. Here, we show that SatIII RNAs and nSBs are detectable up to four days after thermal stress and are linked to defects in chromosome behavior during mitosis. Heat shock perturbs the execution of mitosis. Cells reaching mitosis during the first 3 h of recovery accumulate in pro-metaphase. During the ensuing 48 h, this block is no longer detectable; however, a significant fraction of mitoses shows chromosome segregation defects. Notably, most of lagging chromosomes and chromosomal bridges are bound to nSBs and contain arrays of SatIII DNA. Disappearance of mitotic defects at the end of day 2 coincides with the processing of long non-coding SatIII RNAs into a ladder of small RNAs associated with chromatin and ranging in size from 25 to 75 nt. The production of these molecules does not rely on DICER and Argonaute 2 components of the RNA interference apparatus. Thus, massive transcription of SatIII DNA may contribute to chromosomal instability
    • …
    corecore